Neuroligin-1 links neuronal activity to sleep-wake regulation.

نویسندگان

  • Janine El Helou
  • Erika Bélanger-Nelson
  • Marlène Freyburger
  • Stéphane Dorsaz
  • Thomas Curie
  • Francesco La Spada
  • Pierre-Olivier Gaudreault
  • Éric Beaumont
  • Philippe Pouliot
  • Frédéric Lesage
  • Marcos G Frank
  • Paul Franken
  • Valérie Mongrain
چکیده

Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal models for sleep-wake regulation and synaptic reorganization in the sleeping hippocampus.

In this article, we discuss mathematical models that address the control of sleep-wake behavior in the infant and adult rodent and a model that addresses changes in single-cell firing patterns in the hippocampus across wake and rapid eye movement (REM) sleep states. Each of the models describes the dynamics of experimentally identified neuronal components--either the firing activity of wake-and...

متن کامل

Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle

During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1-/- mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement o...

متن کامل

A Fast-Slow Analysis of the Dynamics of REM Sleep

Waking and sleep states are regulated by the coordinated activity of a number of neuronal population in the brainstem and hypothalamus whose synaptic interactions compose a sleep-wake regulatory network. Physiologically based mathematical models of the sleep-wake regulatory network contain mechanisms operating on multiple time scales including relatively fast synaptic-based interations between ...

متن کامل

Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation.

Interleukin-1beta (IL-1) is a pro-inflammatory cytokine that has been implicated in the regulation of nonrapid eye movement (nonREM) sleep. IL-1, IL-1 receptors and the IL-1 receptor antagonist (ra) are present normally in discrete brain regions, including the preoptic area (POA) of the hypothalamus and the adjoining magnocellular basal forebrain (BF). The POA/BF have been implicated in the reg...

متن کامل

Coupled Flip-Flop Model for REM Sleep Regulation in the Rat

Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 24  شماره 

صفحات  -

تاریخ انتشار 2013